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Abstract
Using the intertwining relation we construct a pseudosuperpartner
for a (non-Hermitian) Dirac-like Hamiltonian describing a two-level
system interacting in the rotating wave approximation with the electric
component of an electromagnetic field. The two pseudosuperpartners and
pseudosupersymmetry generators close a quadratic pseudosuperalgebra. A
class of time-dependent electric fields for which the equation of motion for a
two-level system placed in this field can be solved exactly is obtained. A new
interesting phenomenon is observed. There exists a time-dependent detuning
of the field frequency from the resonance value such that the probability to
populate the excited level ceases to oscillate and becomes a monotonically
growing function of time tending to 3/4. It is shown that near this fixed
excitation regime the probability exhibits two kinds of oscillations. The
oscillations with small amplitude and frequency close to the Rabi frequency
(fast oscillations) take place at the background of those with big amplitude and
small frequency (slow oscillations). During the period of slow oscillations, the
minimal value of the probability to populate the excited level may exceed 1/2,
suggesting for an ensemble of such two-level atoms the possibility of acquiring
an inverse population and exhibit lasing properties.

PACS numbers: 11.30.Pb, 03.65.Fd

1. Introduction

Supersymmetry in physics was introduced in quantum field theory for unifying different
interactions in a unique construct [1]. Supersymmetric formulation of quantum mechanics is
due to the problem of spontaneous supersymmetry breaking [2]. The ideas of supersymmetry
have been profitably applied to many nonrelativistic quantum mechanical problems since, and
now there are no doubts that supersymmetric quantum mechanics (SUSY QM) exists in its
own right (for recent developments see a special issue of 2004 J. Phys. A: Math. Gen. 34
(43)). It is worth noticing that most papers in this field deal with the Hermitian Hamiltonians.
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A differential equation of Schrödinger-like type with a non-Hermitian Hamiltonian
appears in many physical models. One can cite quantum systems coupled to the environment
such as a hydrogen ‘atom’ in an interacting medium subject to a dissipative force [3] (see
also [4]) or different decay or collision reactions (see, e.g., [5]; for more recent developments
see [6]; in [7] the method of SUSY QM is involved). Physical requirements initiated a deep
mathematical study of spectral problems with non-Hermitian Hamiltonians in the 1950s and
1960s. The most essential result was first obtained by Keldysh [8] who proved the completeness
of the set of eigenfunctions and associated functions for a regular Sturm–Liouville problem
with a non-Hermitian Hamiltonian. In the books by Naimark [9] and Marchenko [10] one can
find good reviews of these studies.

A new impetus for studying different properties of non-Hermitian Hamiltonians is due to
the discovery that the real character of the spectrum of a non-Hermitian Hamiltonian may be
in particular related to so-called PT -symmetry [11] and the suggestion to generalize quantum
mechanics by accepting non-Hermitian Hamiltonians with a real spectrum to describe physical
observables [12] (see also the review [13]). The necessary condition for such a generalization
consists of the possibility of defining a Hilbert space with a positive definite metric which is
intimately related to the property of a Hamiltonian to be diagonalizable (for recent discussions
see, e.g., [14, 15]). This apparently may be assured in many cases since non-diagonalizable
Hamiltonians may be transformed into diagonalizable ones by SUSY transformations [16].
The latter property permits us to suppose that the method of SUSY QM may become an
essential ingredient of complex quantum mechanics. This conjecture is also supported by
established properties of this method not only to offer the possibility of obtaining new exactly
solvable complex potentials from known ones [17] but also to aid a deeper understanding
of different properties of complex potentials [17, 18]. In particular, an explicit construction
of a superalgebra involving non-Hermitian Hamiltonians, which may be useful in different
contexts i.e. integrability, quantization, different quantum-field models etc, is shown to be
possible [19] and even now has been extended to the notion of pseudosupersymmetry [20] and
nonlinear pseudosupersymmetry [21].

The relation of the general two-level model described by a non-Hermitian Hamiltonian
acting in the two-dimensional Hilbert space C

2 with pseudosupersymmetry is discussed by
Mostafazadeh [20]. In contrast to the approach of this author, we reduce the time-dependent
Schrödinger equation for the two-level system, interacting in the rotating wave approximation
with the electric component of an electromagnetic field, with a Hermitian Hamiltonian (see,
e.g., [22]) to the one-dimensional stationary Dirac equation with an effective non-Hermitian
Hamiltonian where time plays the role of the space variable. If we considered the spectral
properties of the latter Hamiltonian we would define it in the Hilbert space L2(0, T ) ⊗ C

2.
But as we shall see in our approach the spectral parameter in the Dirac equation is not related
to spectral properties of the two-level system. Therefore we will not discuss any spectral
features of this Hamiltonian and in particular its diagonalizability. Of course, the obtained
Dirac equation is completely equivalent to the initial Schrödinger equation, and if one studied
it by usual means one would not get any new information about the two-level system. From
this point of view, the method of SUSY QM we are using proves its extreme efficiency once
again.

To find a pseudosuperpartner for the given Dirac-like Hamiltonian, we are using the
technique of intertwining operators developed in [23] for the one-dimensional stationary
Dirac equation. We have to note that the application of results of this paper to our particular
problem is not straightforward since transformation operators of the general form do not
preserve the very peculiar form of the effective Dirac Hamiltonian corresponding to the two-
level system. So, below we show how one can choose the necessary ones from the wide variety
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of possible transformations. In our approach in contrast to [20] the two pseudosuperpartners
and pseudosupersymmetry generators constructed with the help of first-order intertwiners
close a quadratic pseudosuperalgebra. As usually happens for the method of intertwining
operators [24], if one of the two Hamiltonians is exactly solvable the same property occurs
for the other. In this way starting from the simplest case corresponding to the famous Rabi
oscillations, we have found new electric fields having time-dependent frequencies for which
the equation of motion of the two-level system has exact solutions. While analysing solutions
of the Schrödinger equation, we have found a new interesting physical phenomenon. We
show that there exists a time-dependent detuning of the field frequency from the resonance
value such that the probability to populate the excited level ceases to oscillate and becomes
a monotonically growing function of time tending to 3/4. Of course this is a strictly fixed
excitation regime similar to resonance. We also study how the above probability behaves
under small deviations from this specific regime. We have found that when the parameters
of the model are close enough to the specific values, the probability exhibits two kinds of
oscillations. The oscillations with small amplitude and frequency close to the Rabi frequency
(fast oscillations) take place at the background of those with big amplitude and small frequency
(slow oscillations). During the period of slow oscillations, which grows when the parameters
of the model approach the above specific values, the minimal value of the probability to
populate the excited level may exceed 1/2, suggesting for an ensemble of such two-level
atoms the possibility of acquiring an inverse population and exhibit lasing properties.

We have to note that some of the results we give below are known from a previous paper
[25]. These authors also use a similar intertwining technique but they do not relate it to
pseudosupersymmetry and do not give any analysis of solutions this method can provide.
Moreover, we give a deeper analysis of restrictions imposed on transformation operators by
the features of the two-level system. In particular, we show that both the new Hamiltonian
and solutions of the new Dirac equation can be expressed in terms of a real-valued function
which is a solution of a second-order differential equation with real coefficients. Since such
equations always have real solutions our analysis opens up the direct possibility of realizing
chains of transformations preserving the form of the Dirac-like Hamiltonian imposed by the
features of the two-level system.

2. Preliminary

The two-level model in the rotating wave approximation with a possibly time-dependent
detuning is described by the following system of equations (see, e.g., [22]):

iȦ1 − f A1 = ξA2 iȦ2 + f A2 = ξA1 (1)

where ξ = 1
2h̄E0d12, d12 is the matrix element of the dipole interaction operator, E0 is the

amplitude of the electric component of an external electromagnetic field; f = 1
2

d
dt

(δt), δ(t) =
ω12 − ω(t), ω12 = 1

h̄
(ε1 − ε2), ε1 and ε2 are energy levels of the free atom and ω(t) is the

field frequency; the dot over the symbol means the derivative with respect to time. While
normalized properly the functions |A1(t)|2 and |A2(t)|2 give occupation probabilities for the
ground and excited states respectively. If ω does not depend on time (hence f = 1

2δ = const),
the solutions of system (1) are well known. For instance, with the initial condition A2 = 0
and A1 = 1 at t = 0 we get the well-known formula [22] for the excited state occupation
probability if initially the system is in the ground state

P(t) = |A2(t)|2 = ξ 2

2�2
[1 − cos(2�t)] �2 = f 2 + ξ 2 (2)
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with 2ξ known as the Rabi frequency. Probability (2) is an oscillating function of time (so-
called Rabi oscillations). At the resonance

(
f = 1

2δ = 0
)

it oscillates with the Rabi frequency.
Therefore the value δ(t) characterizes the detuning of ω(t) from its resonance value equal
to ω12. In section 5 using the formalism developed in section 4 we shall get time-dependent
functions f = f (t) (and hence δ(t)) for which system (1) permits exact solutions. As we
show below (section 5), there are time-dependent corrections to the detuning that we will
consider; although they may change crucially the time-dependent behaviour of the solutions
of system (1), they essentially keep the oscillating character of the probability to populate the
excited level with the frequency close to 2�. Yet, the absence of the Rabi oscillations may
be considered as oscillations with the same frequency but with the zero amplitude since they
may be obtained as the corresponding limiting case of oscillations with a nonzero amplitude.
So, in our approach the rotating wave approximation is as good as it is in the classical case of
an electric field of constant frequency.

Let us rewrite system (1) in the matrix form

h0� = E� h0 = γ ∂t + V0 (3)

where

V0 = if0σy (4)

γ = iσx,E = ξ,� = (A1, A2)
T (the superscript ‘T’ denotes the transposition) and we

replaced f (which we will call the ‘potential’) in (1) by f0; σx,y,z denote the standard
Pauli matrices. Equation (3) is the one-dimensional stationary Dirac equation with the non-
Hermitian Hamiltonian h0 defined by potential (4) where t plays the role of the space variable.
By construction the parameters f0 and E are real. For a fixed value of the dipole momentum
of the irradiated system, the parameter E = ξ is defined by the amplitude of the electric field
and, hence, is not related to spectral properties of the system. A useful comment is that since

the Hamiltonian of system (1) is Hermitian, Hsch = (
f ξ
ξ −f

)
, the evolution of the two-level

system is unitary even for a time-dependent function f = f (t). This means that the C
2 inner

product, |A1(t)|2 + |A2(t)|2, for the Dirac equation (3) is t-independent.

3. SUSY algebra with non-Hermitian Hamiltonians

Let us have a non-Hermitian Hamiltonian h0. We will not consider it as a Hamiltonian acting
in a Hilbert space, but to construct a SUSY algebra we need adjoint operators which we will
introduce in a formal way. Denote by h+

0 the operator formally adjoint to h0. As usual the
adjoint operation consists of taking the complex conjugation and transposition; the operator
of the first derivative is skew-Hermitian and (AB)+ = B+A+.

Let h1 be a ‘transformed Hamiltonian’ which should be found together with the
transformation operator L by solving the intertwining relation Lh0 = h1L and h+

1 be its
adjoint. The later participates in the adjoint intertwining relation h+

0L
+ = L+h+

1 . It means that
the operator L+ transforms eigenfunctions of h+

1 into eigenfunctions of h+
0 .

Let us suppose that there exists an operator J such that h+
0,1 = Jh0,1J and J 2 = ±1, J + =

±J (in general both signs may be accepted). Then from the adjoint intertwining relation, it
follows that JL+Jh1 = h0JL+J meaning that the operator JL+J realizes the backward
transformation from h1 to h0 and the operator JLJ transforms from h+

0 to h+
1 . From here we

infer that the superposition JL+JL transforms solutions of equation (3) into solutions of the
same equation. This means that this is a symmetry operator for this equation. In the simplest
case when L is a differential operator that we would like to consider that this symmetry operator
may be a function of h0, so we will suppose that JL+JL = F1(h0). For the same reason,
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the superposition LJL+J may be a function of h1 leading to LJL+J = F2(h1). Moreover,
we will also suppose that F2(x) = F1(x) ≡ F(x) is an analytic function. These properties
generalize the known factorization (polynomial factorization if F(x) is a polynomial, see e.g.
[23, 24]) properties taking place for the Hermitian case.

It follows from (3) and (4) that in our case J = σx . Keeping in mind the properties of the
operators L and J let us introduce the following matrix operators:

H =
(

h0 0
0 h1

)
Q1 =

(
0 0
L 0

)
Q2 =

(
0 JL+J

0 0

)
. (5)

It follows from the intertwining relations that the operators Q1, and Q2 commute with H
and they apparently are nilpotent. The above factorization properties are equivalent to the
following anticommutation relation: Q1Q2 + Q2Q1 = F(H).

Now if we identify our J operator with η− = η−1
+ introduced in [20], J = η− = η−1

+ , our L
operator with D and JL+J with D�, we conclude that the operator Q2 becomes pseudoadjoint
to Q1, the operators H,Q1 and Q2 close a nonlinear superalgebra and one can associate a
nonlinear pseudosupersymmetry with a quantum system described by the Hamiltonian H. In
the following section, we shall show that a quadratic pseudosupersymmetry may be associated
with the two-level system.

4. Intertwining operators for two-level Hamiltonians

To be able to associate a pseudosupersymmetry with the Hamiltonian given in (3) and (4),
we have to find an intertwining operator and a partner Hamiltonian h1. According to [23]
the intertwining operator L for a matrix equation such as (3) is defined with the help of a
matrix-valued function U = U(t) satisfying the equation

h0U = U� � = diag(λ1, λ2) (6)

called the ‘transformation function’, as follows:

L = ∂t − W W = U̇U−1. (7)

Here λ1 and λ2 are arbitrary constants. The operator L transforms a solution � of equation (3)
into a solution � of the same equation where the matrix V0 is replaced by

V1 = V0 + �V �V = γW − Wγ. (8)

Here and in the following the subscript 0 marks quantities before the transformation and 1
marks these after the transformation. It is not difficult to see that to preserve form (4) of the
potential so that V1 = if1σy , it is sufficient to take the transformation function of the form

U =
(

u11 u11

u21 −u21

)
. (9)

In this case the column-vector U1 = (u11, u21)
T is a solution to the initial equation (3)

corresponding to the eigenvalue λ and the column-vector U2 = (u11,−u21)
T is a solution to

the same equation with the eigenvalue −λ (note that this symmetry is built into the system (3)!)
so that � in (6) has the form � = diag(λ,−λ). After some simple algebra one finds from (8)
that f1 = f0 + �f where

�f = λ

(
u11

u21
− u21

u11

)
− 2f0. (10)

In general, solutions U1,2 of equation (3) from which the matrix U is composed,
U = (U1, U2), are complex, leading to a complex-valued potential difference �f . For
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physical reasons, we require real potentials. A necessary condition for �f to be real is that the
eigenvalue λ be purely imaginary. Indeed, it is easy to show that λ cannot be real. According
to (10) �f is defined by the expression

u11

u21
− u21

u11
. Putting

u11

u21
= � exp(iϕ) one finds

u11

u21
− u21

u11
=

(
� − 1

�

)
cos ϕ + i

(
� +

1

�

)
sin ϕ (11)

and our claim follows from the fact that � + 1
�

is never equal to zero. Finally one can prove

that λ2 is real (cf [25]).
Now when the imaginary character of λ is established we see from (10) that the left-hand

side of (11) must be purely imaginary, which is possible only if � = 1, meaning that u11 and u21

have the same absolute value. Therefore one can put u11 = ρ exp(iϕ1) and u21 = ρ exp(iϕ2).
Using the fact that U1 = (u11, u21)

T satisfies equation (3) with E = λ and setting λ = iR,
where R is real, one gets from (3) a system of equations for ρ, ϕ1 and ϕ2. Of these equations
we need only

ϕ̇2 − ϕ̇1 − 2f0 + 2R sin(ϕ2 − ϕ1) = 0. (12)

If R = 0, equation (12) can readily be integrated. Suppose R �= 0, the change of the dependent
variable in equation (12), ϕ2 − ϕ1 = 2 arctan q, yields for q the Riccati equation

q̇ + 2Rq − f0(1 + q2) = 0. (13)

If f0 = 0 the equation for q is readily integrated: q = exp(−2Rt). Considering f0 �= 0 one
can linearize (13) by putting q = −u̇/(uf0), so u is a solution to the second-order equation

ü + (2R − ḟ 0/f0)u̇ + f 2
0 u = 0. (14)

Introducing the new variable ψ by putting u = exp(−Rt)
√

f0ψ , one eliminates the first
derivative term from (14) thus obtaining

ψ̈ +

[
f 2

0 +
1

2

d2

dt2
lnf0 −

(
1

2

d

dt
ln f0 − R

)2
]

ψ = 0. (15)

This equation has two linearly independent real solutions and, hence, ψ is defined up to one
real constant. Once ψ is fixed one calculates q:

q = R

f0
− ḟ 0

2f 2
0

− ψ̇

f0ψ
(16)

and the potential difference �f = 2R sin(ϕ2 − ϕ1) − 2f0:

�f = 4Rq

1 + q2
− 2f0. (17)

Solution � of the equation h1� = E� with h1 = γ ∂t +V1, V1 = V0 +�V,�V = i�f σy

can be found by applying the transformation operator (7) to the solution � of equation (3),
� = L�. It is easy to see that the matrix W is diagonal

W = diag(w1, w2) w1 = −if0 + Ru21/u11 w2 = w∗
1 . (18)

and the ratio of the components of the spinor U1 defining w1 in (18) is also expressible in
terms of the function q:

u21

u11
= (1 + iq)2

1 + q2
. (19)

Finally, skipping calculational details but noting that just in the same way as was done in
[23], one can find the following factorizations:

JL+JL = h2
0 − λ2, LJL+J = h2

1 − λ2 (20)



Quadratic pseudosupersymmetry in two-level systems 4721

with J = σ1. This means that the function F from section 3 is F(x) = x2 − λ2, the operators
H,Q1 and Q2 close the quadratic superalgebra, and the quadratic pseudosupersymmetry
underlies the two-level system interacting with the electric component of an electromagnetic
field.

5. Application: SUSY transformations of the Rabi oscillations

In this section we illustrate a new physical phenomenon we observed while analysing solutions
of system (1) obtained using the above-developed technique.

We start with δ0 = 2f0 = ω12 − ω0 = constant (this corresponds to the Rabi oscillations
(2)) to get a time-dependent ‘potential’ f1(t) = f0 + �f (t) = 1

2
d
dt

[δ1(t)t]. Once f1(t) is
found we calculate the detuning δ1(t) = ω12 − ω1(t) by integrating the previous equation

δ1(t) = 2

t

∫ t

0
f1(t) dt. (21)

We have found that relatively small but time-dependent perturbations of the field frequency
ω1(t) from its resonance value equal to ω12 may influence essentially the time behaviour of
the probability P1(t) to populate the excited state level with respect to the constant frequency
case.

If f0 = const, equation (15) for ψ reduces to

ψ̈ + � 2ψ = 0 � 2 = f 2
0 − R2 = const. (22)

Solutions of this equation have different properties depending on whether the value � 2 is
positive, negative or zero. We have found that the oscillating behaviour of the probability
P1(t) disappears when � = 0. In this case the general solution to equation (22) is a linear
function of time ψ = At + B which according to (16) gives the following time dependence of
the function q: q(t) = 1 − A/(Atf0 + Bf0). Once q(t) is found one calculates the ‘potential
difference’ with the help of formula (10) and finally the new ‘potential’ f = f1(t):

f1(t) = f0 − 2A2f0

2A2f 2
0 t2 − 2Af0(A − 2Bf0)t + A2 − 2ABf0 + 2B2f 2

0

. (23)

Another restriction leading to the desired result is A = 2Bf0 which reduces the previous
equation to a simpler form

f1(t) = f0 − 4f0

1 + 4f 2
0 t2

. (24)

Since solutions A10(t) and A20(t) of system (1) for f = f0 = const are known, one
can find solutions A11(t) and A21(t) of the same system with f = f1(t) by applying the
transformation operator L defined by formulae (7), (18) and (19) to the previous solution. In
this way, imposing the initial condition A11(0) = 1 and A21(0) = 0 one finds the probability
P1(t) to populate the excited level at the time moment t if at t = 0 only the ground state level
is populated

P1(t) = |A21(t)|2 = ξ 2

�6
0

(
1 + 4f 2

0 t2
) [

16f 4
0 �2

0t
2 cos2 �0t

+ 4f 2
0 �0t

(
ξ 2 − 3f 2

0

)
sin 2�0t +

(
4f 2

0 �4
0t

2 +
(
ξ 2 − 3f 2

0

)2)
sin2 �0t

]
. (25)

Here �0 =
√

f 2
0 + ξ 2 and 2�0 is the frequency of oscillations of the probability P0(t) (2)

at f = f0. It is clearly seen that P1(t) is an oscillating function provided ξ 2 �= 3f 2
0 . For

ξ 2 = 3f 2
0 (�0 = 2f0) the probability becomes equal to

P1(t) = 3f 2
0 t2

1 + 4f 2
0 t2

(26)
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which is a function monotonically growing from zero at the initial time moment up to the value
3/4 at t → ∞. We have to note that for a fixed ξ the parameter f0 is fixed also, f0 = ξ/

√
3,

which by means of formulae (24) and (21) fixes the frequency of the electric field in a unique
way. So, for the given dipole momentum this excitation regime is fixed by the amplitude of
the electric field. Let us analyse now what is happening with the probability P1(t) when the
parameters of the model are close to this exceptional point.

Suppose now � 2 > 0 and we will consider it to be close to zero. In this case the general
solution to equation (22) may be written as ψ = A

�
sin(�t +a +b). The function q as given in

(16) does not depend on the value of the coefficient A
�

but we need this coefficient to realize
the limit � → 0 thus recovering the previously obtained solution. Choosing b such that
sin 2b = �/f0 and cos 2b = R/f0 but keeping a arbitrary one gets

ψ̇

ψ
= −�

� − f0 sin(2�t + 2a)

R − f0 cos(2�t + 2a)
. (27)

This leads to the following expression for q:

q = R cos(2�t + 2a) + � sin(2�t + 2a) − f0

f0 cos(2�t + 2a) − R
(28)

and finally to the ‘potential difference’ of the form

�f (t) = 2� 2

R cos(2�t + 2a) − f0
. (29)

This formula has been previously derived by Bagrov et al by other means [25]. Putting
a = arctg �

2f0
− 1

2 arctg�
R

one recovers for f1(t) = f0 + �f (t) the previous result (24) as the
limit � → 0. This means that for � close to zero the probability P1(t) corresponding to the
potential difference (29) should be close to the previous value (26). The analytic expression
for P1(t) is rather complicated and we will restrict ourselves to graphical illustrations.

Let us fix the Rabi frequency 2ξ . The function �f (t) (29) contains three parameters
�,f0 and a. The parameter f0 defines the value 2�0 = 2

√
f 2

0 + ξ 2, which is the frequency
of oscillations of the function P0(t) given by (2) to which P1(t) is reduced when the time-
dependent correction �f (t) is absent. As was already mentioned when f0 = 0 (resonance
case) the function P0(t) oscillates with the Rabi frequency 2ξ . The parameter � defines the
frequency of the time-dependent correction �f (t) (29) for f1 = f0 + �f , and the parameter
a is responsible for the initial value of f1(t). The probability P1(t) is a periodical function if
�0 is commensurable with � . In this case it exhibits two kinds of oscillations, namely, fast
oscillations with frequency 2�0, which is close to the Rabi frequency when f0 is close to zero,
taking place at the background of slow oscillations with frequency 2� .

For our numerical illustrations we choose f0 = 1. If in standard units this is 1 × 1011 c−1

this corresponds to 10−11 c as the unit of time in our figures.
Figure 1(a) shows the probability P1(t) for �0 = 2, a = 0.015 and � = 1/4 (solid line)

and � = 1/6 (dotted line).
Figure 1(b) illustrates the time behaviour of the detuning δ1(t) calculated according to (21)

for a = 0.015,� = 1/4 and � = 1/6 (solid and dotted lines respectively) together with its
limiting value corresponding to � = 10−3 and a = 10−6 (dashed line). It is clearly seen from
figure 1(a) that the period of slow oscillations grows when � decreases and fast oscillations go
around the limiting value 0.75 with the amplitude increasing with � decreasing. Moreover,
figure 1(b) says that the oscillating behaviour of P1(t) is transformed into monotonically
growing one when for � = 0 the detuning becomes a monotonic function of time (dotted line in
figure 1(b)). If it acquires some oscillating perturbations the probability also starts to oscillate.
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(a)
(b)

Figure 1. (a) Probability P1(t) at different values of � . (b) Detuning δ1(t) at different values
of � .

(a) (b)

Figure 2. (a) Probability P1(t) at different values of a. (b) Detuning δ1(t) at different values of a.

Figure 3. Probability P1(t) at different values of �0.

Figures 2 and 3 show the dependence of the same quantities on the parameter a which is
responsible for the phase shift in formula (29) at the fixed value � = 1/5. Dotted, dashed and
solid lines (figure 2(a)) correspond to a = 0, a = 0.02 and a = 0.08 respectively. Figure 2(b)
shows the time dependence of the detuning δ(t) for a = 0 (dotted line) and a = 0.08 (solid
line). From figure 2(b) we can conclude that the parameter a defines mainly the maximum of
the absolute value of the detuning which it takes at t = 0. Figure 2(a) says that the amplitude
of fast oscillations grows together with a.

Figure 3 shows the dependence of P1(t) from the frequency of fast oscillations �0 at
a = 0 and � = 0.2. Dotted, solid and dashed lines correspond to �0 = 2,�0 = 1.6 and
�0 = 1.2 respectively. The more it differs from the critical value equal to 2 corresponding
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to ξ 2 = 3f 2
0 , when the oscillations in formula (25) disappear, the bigger the amplitude of the

fast oscillations becomes.

6. Conclusion

Using the technique of intertwining operators for a Dirac-like system developed in [23] we
have found time-dependent electric fields for which the equation of motion for a two-level
system placed in this field obtained after the rotating wave approximation can be solved exactly.
Pseudosupersymmetry generators constructed with the help of intertwining operators together
with the super-Hamiltonian close a quadratic deformation of the superalgebra constructed
in [20]. We conclude, hence, that two-level systems in external electromagnetic fields may
have hidden quadratic pseudosupersymmetry which is responsible for the new phenomenon
consisting of disappearance of the Rabi oscillations.
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